Team Warm-up
The Warm-Up prompt for the lesson asks students to think why it might be impossible to draw a line. This allows me to introduce geometric constructions as pencil-and-paper models of geometric objects, which are ideal concepts.
This lesson opener follows our Team Warm-up routine, with students writing individual answers in their Learning Journals. I display the prompt using the Slideshow for the lesson.
Goal-Setting
As I am introducing the topic of constructions, I display the lesson Agenda and Learning Targets.
I distribute copies of the Guided Notes for this activity.
I use direct instructions for introducing constructions. Prior to this lesson, my students have been working with construction tools for a week, and I have been giving some informal instruction. Now, however, I am instructing them in the techniques that will allow them to use a compass and straight-edge with efficiency and precision (MP5, MP6).
The rationale for the guided notes is:
I tell students that they are free to work ahead if they feel confident. However, I will not be able to rescue them if they get lost. If they get confused, they should just sit tight, pay attention, and wait for the class to catch up.
During this lesson, we learn the following constructions:
Students find these constructions pretty straightforward. (In fact, they have performed several of them many times in the past week.) So, this section is really about getting organized and teaching students the routine for learning constructions.
Students practice the constructions they have just learned using the Rally Coach format. I display the instructions on the front board. I distribute the Activity, and students perform the exercises on their own paper.
I am on the lookout for: Are students using the scale of their ruler?
Some will not want to get out of their comfort zone, so they will actually measure a line segment (in centimeters, say), perform multiplication when required, and use the ruler scale to measure a copy of the segment. After I see that students have diligently performed that procedure once or twice, it is not hard to persuade them that a compass measures length much more efficiently (and just as precisely) (MP5, MP6).
As teams complete the practice problems, I display the instructions and pass out the handout for this challenge Constructions Challenge Activity.
The goal of this activity is to have students apply what they have learned about the properties of geometric objects to solve a basic construction problem: constructing a triangle using three given sides.
I am on the lookout for:
Are students having trouble starting the triangle?
I tell them to start with any line segment. They can put it anywhere. Just, don't work too close to the edge of the paper.
Are students stumped about how to position the remaining sides of the triangle?
Some may actually be using guess and check. This is an opportunity for a class discussion about the properties of a circle! I bring the class together and ask them to focus on the front board, where I draw one side of the triangle. (If a student has made a good start, however, I use student work which I project on the front board using a document camera.)
How should we place the second side? Well, what do we know? We know that the second side has to connect to the side we have, so we know where to put one endpoint. We also know how long the side should be, but we don't know what direction it should take. Sketching three or four possible sides of the correct length, I show how the other endpoint of the side--being a set distance from the vertex--must lie on a circle. So, we can use a circle to represent all the possible locations for the second endpoint (MP4). From here, students can usually fill in the rest.
Team Size-Up
The lesson close follows our Team Size-Up routine. The prompt asks students to describe a straight-edge and a compass and to tell what each tool is for.
Homework
Homework Set 2 problems #20-22 focus on the constructions students have just learned.